1,367 research outputs found

    Nonlinearity-Tolerant Modulation Formats for Coherent Optical Communications

    Get PDF
    Fiber nonlinearity is the main factor limiting the transmission distance of coherent optical communications. We overview several modulation formats intrinsically tolerant to fiber nonlinearity. We recently proposed family of 4D modulation formats based on 2-ary amplitude 8-ary phase-shift keying (2A8PSK), covering the spectral efficiency of 5, 6, and 7 bits/4D symbol, which will be explained in detail in this chapter. These coded modulation formats fill the gap of spectral efficiency between DP-QPSK and DP-16QAM, showing superb performance both in linear and nonlinear regimes. Since these modulation formats share the same constellation and use different parity bit expressions only, digital signal processing can accommodate those multiple modulation formats with minimum additional complexity. Nonlinear transmission simulations indicate that these modulation formats outperform the conventional formats at each spectral efficiency. We also review DSP algorithms and experimental results. Their application to time-domain hybrid modulation for 4–8 bits/4D symbol is also reviewed. Furthermore, an overview of an eight-dimensional 2A8PSK-based modulation format based on a Grassmann code is also given. All these results indicate that the 4D-2A8PSK family show great promise of excellent linear and nonlinear performances in the spectral efficiency between 3.5 and 8 bits/4D symbol

    Re‐analysis of late Quaternary dust mass accumulation rates in Serbia using new luminescence chronology for loess–palaeosol sequence at Surduk

    Get PDF
    Despite numerous palaeoenvironmental investigations of loess–palaeosol sequences across the Carpathian Basin, well‐dated high‐resolution records are scarce. This paper presents a new high‐resolution chronology for the loess‐palaeosol sequence at Surduk (Serbia), based on optically stimulated luminescence (quartz) and post‐infrared infrared stimulated luminescence (polymineral) dating. The presented record spans 53–19 ka, with primary loess deposition occurring after 52±2 ka, and differs from previously published chronologies that relied on less precise and now superseded dating protocols. Based on the new chronology, mass accumulation rates (MAR s) for Surduk were constructed and compared with sites in the Carpathian Basin. The results demonstrate that accumulation periods across this area are not consistent in timing or rates. The high‐resolution dating strategy identifies a disturbance in sediment deposition that occurred after 45±2 ka and implies that site contains a hiatus. Finally, we show samples that failed routine dose recovery and preheat plateau tests, and had low fast ratios. Supported by bulk sample geochemical analysis it is proposed that a potential abrupt source shift, during the Last Glacial Maximum, may be the cause of the anomalous luminescence behaviour

    Nonlinearity Tolerant LUT-based Probabilistic Shaping for Extended-Reach Single-Span Links

    Get PDF
    We propose Huffman-coded sphere shaping (HCSS) as a method for probabilistic constellation shaping which provides improved tolerance to fiber nonlinearities in single-span links. An implementation of this algorithm based on look-up-tables (LUTs) allows for low-complexity, multiplier-free shaping. The advantage of short-length shaping for mitigating fiber nonlinear impairments is experimentally demonstrated for a system employing dual–polarization 64–ary quadrature amplitude modulation (DP-64QAM) at 56 GBd and operating over 210 km of standard single-mode fiber (SSMF). A gain in achievable information rate (AIR) of 0.4 bits/4D-symbol compared with uniform signaling is measured, corresponding to a 100% improvement in shaping gain compared with ideal Maxwell–Boltzmann (MB) shaping. The combinatorial mapping and demapping algorithms can be implemented with integer addition and comparison operations only, utilizing an LUT with 100 kbit size

    Evaluating cognitive relationships with resting-state and task-driven blood oxygen level-dependent variability

    Get PDF
    Recent functional magnetic resonance imaging studies have reported that moment-to-moment variability in the blood oxygen level-dependent (BOLD) signal is positively associated with task performance and, thus, may reflect a behaviorally sensitive signal. However, it is not clear whether estimates of resting-state and task-driven BOLD variability are differentially related to cognition, as they may be driven by distinct sources of variance in the BOLD signal. Moreover, other studies have suggested that age differences in resting-state BOLD variability may be particularly sensitive to individual differences in cardiovascular, rather than neural, factors. In this study, we tested relationships between measures of behavioral task performance and BOLD variability during both resting-state and task-driven runs of a Stroop and an animacy judgment task in a large, well-characterized sample of cognitively normal middle-aged to older adults. Resting-state BOLD variability was related to composite measures of global cognition and attentional control, but these relationships were eliminated after correction for age or cardiovascular estimates. In contrast, task-driven BOLD variability was related to attentional control measured both inside and outside the scanner, and importantly, these relationships persisted after correction for age and cardiovascular measures. Overall, these results suggest that BOLD variability is a behaviorally sensitive signal. However, resting-state and task-driven estimates of BOLD variability may differ in the degree to which they are sensitive to age-related, cardiovascular, and neural mechanisms
    • 

    corecore